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Abstract
The accuracy of the structural data obtained from the recently proposed generalization to
non-additive hard-spheres (Schmidt 2004 J. Phys.: Condens. Matter 16 L351) of Rosenfeld’s
functional is investigated. The radial distribution functions computed from the direct correlation
functions generated by the functional, through the Ornstein–Zernike equations, are compared
with those obtained from the density profile equations in the test-particle limit, without and with
test-particle consistency. The differences between these routes and the role of the optimization
of the parameters of the reference system when the functional is used to obtain the reference
bridge functional are discussed in the case of symmetric binary mixtures of non-additive
hard-spheres. The case of highly asymmetric mixtures is finally briefly discussed.

1. Introduction

The application of the density functional theory (DFT)
of classical systems requires the development of flexible
functionals. This is especially important when DFT is used
to obtain structural properties from the method of the test
particle. Several successful functionals have been proposed
in recent years for simple models such as the hard-sphere
mixtures, the Lennard-Jones (LJ) or the Yukawa potential, but
a generic functional capable of treating general interaction
potentials beyond the mean field is still lacking (see for
e.g. the review by Evans [2]; for more recent references see
for example [3]). For this reason, methods based on the
knowledge of the functional for some reference systems are
very useful. This is the case with the approach pioneered
by Rosenfeld [4], who proposed to use, for the unknown
bridge functional, that of additive hard-spheres (HS) (the
so-called fundamental measures functional (FMF)). Besides
the HS mixture [5], this method has been used to study
the LJ fluid [6], slightly asymmetric mixtures with various
interactions [7], the potential of mean force (PMF) for colloids
in the bulk [8] and in confined geometry [9, 10], up to the
drying phenomenon [11] and spherically averaged anisotropic
potentials [12]. Under the designation of reference functional
approximation (RFA), we recently demonstrated [13] how
it can be used to compute bulk free energies. The result
improves upon the standard approximation of the non-local

term in the reference hypernetted chain (RHNC) theory of
Lado [14, 15]. Although being successful for a variety
of interaction potentials, the original FMF may, however,
be insufficient in some conditions. This is the case, for
example, with the potential of mean force for certain highly
asymmetric mixtures with attractive forces [8] (see also the
discussion in [16] for hard-sphere mixtures). In the same
theoretical framework, Schmidt has generalized the FMF to
bonded potentials [17], soft ones [18], and more recently [1]
to non-additive hard-spheres (NAHS). The first are discussed
in [19] (the connection between the weight functions and the
‘geometrical’ properties of the particles is then not as simple
as for hard-spheres—see for example [20]). In [1], it was
shown that the NAHS functional gives an accurate description
of the structure when the direct correlation functions (dcfs)
computed as the second functional derivatives are inserted in
the Ornstein–Zernike (OZ) equations [21]. Since he did not
consider the test-particle limit, we do this here to further assess
this method (we are not aware of tests other than Schmidt’s
calculations). Furthermore, since this procedure is limited to
the NAHS mixture, one needs to invoke the RFA to study more
general models with this functional. A conclusive test in this
context would considerably extend its potential use. To this
end, we first recall in section 2 the theoretical basis of this
method. In section 3, we present a comparison of the different
routes for the structure of the NAHS mixture. We also briefly
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discuss the case of high size asymmetry. Section 4 summarizes
our conclusions.

2. Theoretical background

2.1. General outline of the reference functional approach

The basis of the reference functional approximation is
discussed in Rosenfeld’s paper [4]. We briefly recall here the
main steps of its implementation (see also [7, 13] for details).
The starting point consists in devising some approximation for
the excess free energy functional Fex[ρ] for an inhomogeneous
fluid whose particles are subject to an external potential
Vi(r) (in what follows, F[ρ] designates a functional of the
inhomogeneous density ρ(r), which in a mixture corresponds
to a set of densities {ρi(r)}). From the intrinsic free energy
functional F[ρ], the excess part Fex[ρ] with respect to the
ideal gas is defined as

Fex[ρ] ≡ F[ρ] − kBT
∑

i

∫
dr ρi (r)(ln ρi (r)�3

i − 1), (1)

where kB is the Boltzmann constant, T is the absolute
temperature and �i is the thermal de Broglie wavelength.
Useful approximations are obtained starting from the
functional Taylor expansion of Fex[ρ] about some reference
density ρ0. The coefficients of the expansion are the n-body
direct correlation functions c(n) for species k, . . . , l, defined
by c(n)

k,...,l(r1, . . . , rn) = − δ(n)βF ex[{ρi (r)}]
δρk (r1)···δρl (rn)

(with β = 1/kBT ),
evaluated for ρ0(r). The contributions up to second order in
the density difference �ρi(r) = ρi(r)−ρi,0(r) are collected in
the contribution F (2)[ρ], usually referred to as the hypernetted
chain (HNC) functional:

F (2)[ρ] = Fex[ρ0] − kBT
∑

i

∫
dr c(1)

i (r, ρ0)�ρi (r)

− 1
2 kBT

∑

i, j

∫
dr dr′c(2)

i, j (r, r′, ρ0)�ρi (r)�ρ j(r′) (2)

and the terms beyond second order define the bridge
functional [4]:

FB[ρ] ≡ Fex[ρ] − F (2)[ρ]. (3)

To go further, one needs some prescription for FB. In the
reference functional approximation, it is replaced by the bridge
functional of a reference system, FB,ref, for which Fex,ref (and
hence also F (2),ref) are known:

FB,ref[ρ] ≡ Fex,ref[ρ] − F (2),ref[ρ]. (4)

In the fundamental measures theory [4] for additive hard-
spheres, the excess functional is taken as

Fex,HS[{ρi(r)}] = kBT
∫

dx �({nα(x)}), (5)

where {nα(x)} is a set of weighted densities constructed from
the actual densities ρi (r) and weight functions ω

(α)
i as nα(x) =∑

i ρi ⊗ ω
(α)

i , where ⊗ designates the convolution product
[ f ⊗ g](r) = ∫

dr′ f (r′) ∗ g(r − r′).

In [1], Schmidt extended this method to non-additive hard-
spheres, i.e. when the cross diameter is σi j = 1

2 (σi +σ j)(1+δ).
To this end, equation (5) is generalized as (for a binary mixture)

Fex,NAHS[ρ1, ρ2] = kBT
∫

dx1

∫
dx2

3∑

α,γ=0

K (12)
αγ (|x1 − x2|)

× �αγ ({n(1)
ν (x1)}, {n(2)

τ (x2)}), (6)

where the functions �αγ depend on weighted densities
n(i)

α (x) = ρi ⊗ ω
(α)

i , one for each type of particle. The
weight functions are the purely scalar Kierlik–Rosinberg
ones [22]. The kernels K (12)

αγ correlate the weighted densities
for component (1) at x1 with those of component (2) at x2

(note the strict correspondence between the coordinates x1, x2

and the species numbers). They involve the delta function and
its derivatives, up to the fifth order. Although the calculations
involve no special difficulty, the algebra is rather tedious given
the number of (ντ

αγ ) derivatives one needs to consider—each
�αγ involving 28 terms (detailed expressions are given in [1]).

From Fex,ref[ρ] (where ref ≡ HS or NAHS), one evaluates
the coefficients c(1),ref

i and c(2),ref
i j of the functional F (2),ref (one-

and two-particle dcfs) and thus determine FB,ref. The excess
free energy in the RFA is thus

Fex[ρ] � F (2)[ρ] + FB,ref[ρ]. (7)

2.2. Computing the structure from the functional

2.2.1. Pair structure from the direct correlation functions.
From the functional Fex in equation (7) one can compute the
2-body dcfs in the bulk as

c(2),FD
i j (|r1 − r2|) = −δ(2)β Fex[{ρi(r)}]

δρi(r1)δρ j(r2)

∣∣∣∣
ρ0

i ,ρ0
j

, (8)

where ρ0
i and ρ0

j are the bulk densities. The label FD is used
to distinguish them from the ones defined by the Ornstein–
Zernike equations:

hi j = ci j +
∑

k

ρkcik ⊗ hkj (9)

together with the closure relations

gi j = exp{−βφi j + hi j − ci j − bi j}, (10)

with gi j = hi j + 1 the radial distribution functions (rdf)—
assuming interaction potentials φi j with spherical symmetry
and bi j the bridge functions. As a first step, one may estimate
the correlation functions as hFD

i j = c(2),FD
i j +∑

k ρkc(2),FD
ik ⊗hFD

k j ,
without using the closures. The convolutions are readily
performed in Fourier space, and from the inverse transforms
one gets gFD

i j = hFD
i j + 1. This is the method used by Schmidt

to test his functional at the level of the structure.

2.2.2. Pair structure from the density profile equations.
Within DFT, the second route for computing the bulk structure
uses the test-particle method due to Percus [23]. One starts
with the equation for the density profile ρi (r) for species i
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subject to an external potential Vi(r). By minimizing the grand
potential �[ρ] = F[ρ] − ∑

i

∫
dr ρi(r)(μi − Vi(r)), one gets

ρi (r) = ρ0
i exp{−βVi(r) + c(1)

i (r) − c(1)
i,o (r)}, (11)

where ρ0
i is the density of particles of type i far from the

inhomogeneity and c(1)
i (r1) = − δβF ex[{ρi (r)}]

δρi (r1)
is the one particle

direct correlation function (μi,ex[{ρi(r); r}] = −kBT c(1)
i

is the excess chemical potential functional). When the
inhomogeneity is created by a test particle t at r0 (say the
origin), such that Vi(r) = φit (r−r0), with φit the pair potential
acting between particles of species i and t , the density profile
is ρi (r) = ρ0

i git(r), where git(r) is the distribution function
for the pair (i, t). This second estimation of the rdf:

gDP
it = exp{−β(φi j + (μi,ex[{ρ j(r)}; r] − μi,ex({ρ0

j }))} (12)

is labeled by DP to emphasize that it follows from the density
profile equation. At this stage, the OZ equation is not used.
The latter is formally introduced by using in the density profile
equation the expansion (1)–(3) to get

git(r, r0) = exp{−βφit(r, r0) + hit (r, r0)

− cit (r, r0) − bit (r, r0)} (13)

in which the bridge functions bit (r, r0) = β δFB

δρi (r)
|ρi =ρ0gi j are

obtained as the functional derivatives of the bridge functional
FB, equation (3). In the RFA, replacing FB by FB,ref (with
ref ≡ HS or NAHS for example) replaces the unknown exact
bridge function by the one computed from the reference
functional bref

i t . This is emphasized in the corresponding rdf
(for spherically symmetric potentials and a test particle placed
at the origin):

gRFA
i j (r) = exp{−βφi j + hi j − ci j − bref

i j }. (14)

This expression is similar [4] to the RHNC closure [14] of
the OZ equations (for a detailed discussion of the differences
see [13]). When the bridge function is, as bref

i j , obtained from
a free energy functional, this route to the structure is often
referred to as the test-particle consistent DFT.

In the RFA, one needs to specify the parameters of
the reference system (here the hard-sphere diameters σi j ).
We consider here the Lado criterion [24] generalized to
mixtures [7]. For non-additive hard-spheres, one also has
to minimize with respect to the cross diameter (i.e. the non-
additivity parameter δ). By defining σ33 ≡ δ the three coupled
equations read

∑

i j

ρiρ j

∫
dr [gi j(r) − gref

i j (r)]∂bref
i j [{gi j}; r ]

∂σkk
= 0;

k = 1, 3. (15)

This simplified criterion is more convenient than the one
strictly consistent with the RFA, as discussed in [13]. As
an alternative, we will also consider the virial-compressibility
consistency:

(
∂β P

∂ρ

)

T

= 1 − ρ
∑

i, j

xi x j c̃i j(k = 0), (16)

where P is the virial pressure, c̃i j(k) is the Fourier transform
of the dcf and xi is the mole fraction of component i . This
criterion allows the determination of one parameter (more if
partial compressibilities are used).

The degree of agreement between gFD
i j , gDP

i j and
gRFA

i j measures the internal consistency of an approximate
functional. Their respective accuracy can be checked by
comparison with exact results. Another aspect is the amount of
numerical work they require. Since the OZ equations must be
solved for each set of reference system parameters, the latter
being determined from the above criteria, computing gRFA

i j is
by far more complex than gFD

i j and gDP
i j (the easiest one being

gFD
i j since it does not require iterations). We present in the next

sections some calculations illustrating these points.

3. Results and discussion

3.1. DCF from the functional derivative versus the
test-particle route

The comparison gFD
i j versus gDP

i j will illustrate one important
consequence of using Fex,NAHS[ρ] in the test-particle limit.
The variables are here the packing fractions ηi = π

6 ρiσ
3
ii . The

total reduced density is ρ∗ = ρ1σ
3
11 +ρ2σ

3
22. Figure 1(a) shows

these functions for one state point considered by Schmidt: at
this scale, they are nearly indistinguishable. On an enlarged
one, however, gDP

i j (r) shows irregularities (discontinuities in
the function or its slope) that do not exist in gFD

i j . By
considering different mesh sizes in direct and reciprocal space
and number of grid points (up 32 768) we have checked that
these are not numerical artifacts. Their origin is related
to the derivatives of the Dirac delta function involved in
K (12)

αγ when they are convoluted with functions which present
discontinuities or have a discontinuous slope. An example is
the following contribution

μ∗
2(r) =

∫
dx w

(2)
2 (|x − r|)

∫
dx′ ∑

α,γ

K (12)
αγ (|x − x′|)

×
[
∂�αγ

∂n(2)
2

− ∂�αγ

∂n(2)
2,0

]
(x, x′) (17)

to the chemical potential functional of species 2 (see the
appendix). The result H (x) of the integration with respect
to x′ is shown in figure 1(b). Due to the use of discretized
Fourier transforms, delta singularities show up as finite height
spikes. The integrations are insufficient to smooth the effect of
the δ(n) derivatives in Kαγ convoluted with the discontinuous
functions �αγ , even after the final convolution with w

(2)
2

(figure 1(c)). Despite some global constraints obeyed by the
functional, the resulting discontinuities cannot be canceled
by other contributions to the chemical potential functional,
since they have completely different structures (a formal
proof would however be non-trivial). This problem with
weights involving delta functions—here also in Kαγ —is not
unusual and similar observations were made in [25, 26].
Such irregularities are absent in the additive case (FMF
with Kierlik–Rosinberg weights) since possible discontinuities
in the integrands of the chemical functionals occur either

3
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Figure 1. (a) Radial distribution functions of a mixture of non-additive hard-spheres from the direct correlation function (FD) and the
test-particle method (DP). The same parameters as figure 2 in [1] (note our convention ‘2’ ≡ big): size ratio σ22/σ11 = 2, δ = 0.3, η2 = 0.05,
η1 = η2/8. The data for g12 and g11 are shifted by 1 and 2 units, respectively. Solid line: FD; dashed line: DP; symbols: simulations.
(b) Integrand of equation (17) (first integration with respect to x′). (c) Final contribution of equation (17) to the chemical potential functional
for species 2. Jumps occur at some multiples of the radius σ11/2 and some combinations involving also σ22/2 and δ.

in the region where the weighted densities are uniform or
beyond the location of the δ(n) singularities). In contrast
with what occurs in this test-particle route, only uniform
densities are involved when computing gFD

i j from c(2),FD
i j . The

functions �αγ ({n(1)
ν (x1)}, {n(2)

τ (x2)}) are then uniform, and the
integration of K (12)

αγ (|x1 − x2|) gives a constant. Accordingly,

c(2),FD
i j (r) shows a smooth variation with separation, besides

the discontinuity at the hard core, as in the additive case. As
illustrated here (in the conditions of figure 1(a)), this effect
is not important. This may no longer be the case at higher
asymmetry or greater non-additivity. We do not see at present
how to correct this with simple modifications of the coefficients
K (12)

αγ .

3.2. Test-particle consistency

We now consider the rdf gRFA
i j , which makes use of the bridge

functional for non-additive hard-spheres. In this case, we also

need to determine the reference system parameters. We first
discuss, as a special case, additive hard-spheres.

3.2.1. Additive hard-spheres. To test the optimization by
equations (15) and (16), we considered a binary mixture
of additive hard-spheres, treated with the bridge functional
for non-additive hard-spheres. In the additive mixture, the
diameters are σ11, σ22 and σ12 = 1

2 (σ11 + σ22). We
denote by σ̃11, σ̃22 and σ̃12 = 1

2 (̃σ11 + σ̃22)(1 + δ̃) the
corresponding (variational) ones in the reference system. For
a non-additivity parameter δ = 0, and before test-particle
consistency, Schmidt’s functional reduces to the additive HS
one. However, it is not a priori certain that the optimum
parameters would be the actual ones (i.e. σ̃11 = σ11; σ̃22 = σ22;
δ̃ = δ = 0) after imposing the consistency. Indeed, in order to
be true, this requires that ∂b(r)

∂δ̃
|̃δ=0 should also vanish while the

derivatives with respect to σ̃11 and σ̃22 should go into those for

4
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Table 1. Radial distribution function of a symmetric mixture of non-additive hard-spheres. ρσ 3 is the total reduced density, δ the actual
non-additivity parameter and δ̃ the optimized one in the RFA, subscripts (2a) and (2b) corresponding to the Lado criterion and the
virial-compressibility consistency respectively. Subscript (1) is for the original FMF (additive case). The simulation data (MC) and the results
of the Ballone–Pastore–Galli–Gazzillo (BPGG) integral equation [30] are from [27].

δ = 0.05 δ = 0.1

ρσ 3 Source g11(d11) g12(d12) δ̃ g11(d11) g12(d12) δ̃

0.2 MC 1.390 1.310 1.420 1.360
BPGG 1.373 1.328 1.436 1.331
RFA(1) 1.377 1.329 1.443 1.330
FD 1.364 1.321 1.425 1.326
DP 1.374 1.327 1.436 1.325
RFA(2a) 1.367 1.321 0.092 1.426 1.316 0.130
RFA(2b) 1.377 1.329 −0.012 1.444 1.331 −0.01

0.4 MC 2.050 1.820 2.24 1.79
BPGG 1.993 1.822 2.211 1.793
RFA(1) 2.005 1.819 2.255 1.771
FD 1.932 1.787 2.149 1.774
DP 2.003 1.816 2.253 1.747
RFA(2a) 1.967 1.791 0.057 2.160 1.723 0.092
RFA(2b) 2.015 1.825 −0.014 2.284 1.780 −0.031

0.6 MC 3.150 2.560 3.900 2.230
BPGG 3.119 2.579 3.712 2.344
RFA(1) 3.160 2.546 3.911 2.187
FD 2.898 2.479 3.419 2.498
DP 3.217 2.526
RFA(2a) 3.018 2.461 0.040 3.350 2.010 0.071
RFA(2b) 3.197 2.565 −0.012 4.104 2.214 −0.048

additive HS. We have checked that this is not actually the case,
except at low density (to simplify the calculation, we used gFD

i j

for gref
i j (r) in equation (15)). The limiting behavior for δ → 0

of the generalized functional is thus not preserved in the test-
particle consistent calculation, with optimization according to
Lado’s criterion. This particular behavior, in particular that of
∂b(r)

∂δ̃
|̃δ=0, led us to consider determining δ̃ from the alternative

criterion (16). We examine this below, starting with symmetric
mixtures.

3.2.2. Symmetric mixture of non-additive hard-spheres. The
case σ11 = σ22 and δ �= 0 has been considered numerous
times in the literature (see references in [1, 7, 27, 28] for
DFT or integral equations and [29] for recent simulations).
We reconsider it here to study the role of the test-particle
consistency in the non-additive HS functional. In table 1,
we show the contact values computed for some of the state
points considered by Gazzillo [27]. The role of the test-particle
consistency can be analyzed by comparing the lines labeled DP
and RFA (with subscripts (1) and (2) for the additive and non-
additive cases respectively).

Quite generally, the functional for non-additive hard-
spheres works rather well over the parameter ranges in table 1,
when the optimum non-additivity parameter is obtained from
the virial-compressibility consistency (RFA(2b)). Note that
some state points are very close to or even inside the spinodal
computed from the compressibility route (vanishing of (1 −
ρ1c̃11)(1 − ρ2c̃22) − ρ1ρ2c̃2

12) at k = 0). One example is the
case ρ∗ = 0.6 and δ = 0.1. Poles at k �= 0 then start to develop
in the Fourier transforms c̃i j(k) used to compute the bridge
functions (see the appendix). As discussed in [31], similar

Figure 2. Comparison of the three routes to the radial distribution
functions of a symmetric mixture of non-additive hard-spheres. The
curves for g12 are shifted by one unit. Solid curves: RFA1−2 (those
with Schmidt’s functional are indicated by an arrow). Dotted
curves: DP, dashed curves: FD. Symbols: simulations. The
parameters are ρ∗ = 0.15, x2 = 0.5, δ = 0.5 (as in figure 3(d)
of [7]).

poles are not seen numerically due to the finite mesh size. The
fact that gRFA remains acceptable even in such pathological
cases testifies of the robustness of the integral equations route
(here test-particle consistent DFT)—in contrast to the FD or
DP ones. This is particularly evident in figure 2, which shows

5
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the rdf for one of the state points considered by Kahl et al [7].
They have shown that the additive HS functional is accurate
in the situations they investigated. Figure 2 shows that, in the
same conditions, the non-additive one does equally well—in
the test-particle consistent route. The poor results obtained in
its absence (gFD

i j and gDP
i j ) highlight the crucial importance of

the consistency imposed by the Ornstein–Zernike equations.

3.2.3. Highly asymmetric mixtures. We finally briefly
consider the case σ22 	 σ11. In figure 3 we show gFD

i j

and gDP
i j for σ22/σ11 = 10 and a state point very close to

the compressibility spinodal. We checked that our values
of the structure factors Si j (k) are the same as in figure 4
in [1]. For this size asymmetry, the value of Si j (k) near
the spinodal is extremely sensitive to the numerical details
(see our previous discussion [32] for additive hard-spheres).
Although criteria such as exact sum rules should be better
indicators, we consider this as a confirmation of the correct
implementation of the functional already evidenced by the
results in figure 1 for σ22/σ11 = 2. Again we observe
an important difference between gFD

i j and gDP
i j . We cannot

compute gRFA
i j for this point which is in the non-convergence

domain of the RFA integral equation. Note that taking δ = 0.5
for σ22/σ11 = 10 corresponds to a strong non-additivity at
the scale of the small spheres (2.25σ11), which is a severe
condition for the functional. To illustrate the effect of the
consistency we consider a less asymmetric situation in which
the RFA converges. An example is shown in figure 4 for
σ22/σ11 = 5, δ = 0.2, η1 = 0.01 and η2 = 0.15. In order
to illustrate the role of the different parameters, three different
steps of a typical RFA calculation are illustrated, the reference
being gDP

i j . The original functional (RFA1) is first used. The
Lado criterion is approximately satisfied for σ̃11 = 1.2σ11,
σ̃22 = 0.91σ22. Good agreement with gDP

i j is then found.
Turning to the functional for the non-additive hard-spheres
(RFA2), we first keep the same values of σ̃11 and σ̃22 and use
δ̃ = δ. The result then differs greatly from gDP

i j . For this

value of δ̃, a better agreement is on the contrary found for
σ̃11 = σ11 and σ̃22 = σ11. This confirms the necessity to
optimize all the parameters of the reference functional. The
best result is expected with (RFA2), but we did not perform
the full optimization because of the considerable amount of
computer time that this requires (but which might, however,
be necessary in specific situations).

To close this discussion we mention the combination of
high asymmetry and attractive forces, that originally motivated
this study. Indeed, [8], pointed out some difficulties with
the FMF when computing the potential of mean force for
macroparticles at infinite dilution for the model considered by
Shinto et al [33]. Although one gains additional flexibility with
the generalized functional, with a clear improvement upon the
results of [8], we could not find a set of optimized parameters
that permit a good description of the simulation data over the
whole separation range. Besides the remarks raised above, we
suspect that an additional difficulty then comes from the use
of an optimization criterion for homogeneous mixtures. This
point being not specific to the generalized functional, we defer
its investigation to future work.

Figure 3. (a) Radial distribution functions of an asymmetric mixture
of non-additive hard-spheres for σ22/σ11 = 10. The parameters are
ρ∗ = 0.164, x2 = 0.189, δ = 0.5. Solid curves: DP, dashed
curves: FD. (b) Structure factors of an asymmetric mixture of
non-additive hard-spheres from the FD dcfs (equation (8)) for
σ22/σ11 = 10. The parameters are the same as in figure 3. Solid
curve: S22(k); dotted curve: S11(k); dashed curve: S12(k).

4. Conclusion

In this work, we have examined the generalization to non-
additive hard-spheres of the free energy functional based on
the fundamental measures of the particles originally proposed
by Rosenfeld.

Our results suggest that the form of the matrix K that
controls the non–local character of the free energy density
should be improved at least to eliminate some unwanted
irregularities in the structural quantities derived in the test-
particle route. In its present form, one must impose the test-
particle consistency to obtain good results for the structure,
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Figure 4. Radial distribution functions of an asymmetric mixture of
non-additive hard-spheres. Solid curve: RFA(2) with σ̃11 = σ11,
σ̃22 = σ22 and δ̃ = δ; dotted curve: RFA(2) with σ̃11 = 1.2σ11,
σ̃22 = 1.09σ22/1.2 and δ̃ = δ; dashed curve: RFA(1); symbols: gDP

22 .
The parameters are σ22/σ11 = 5, δ = 0.2, η2 = 0.15 and η1 = 0.01.

especially close to the spinodal. The non-additivity parameter
should then be determined from the virial-compressibility
consistency rather than from the Lado criterion. The results are
then comparable to those of Rosenfeld’s functional—slightly
better for the correlation between unlike particles—but at the
price of increased complexity. Together with some correction
for the kernel matrix, other optimization criteria might be
necessary to make this functional appropriate for non-standard
interaction potentials, such as those encountered in the one-
component description of soft matter fluids.

Appendix. Bridge function in the test-particle limit of
the RFA

We give here the main steps in the computation of the bridge
functions. From the definition bit(r) = β δFB

δρi (r)
|ρi =ρ0gi j one

obtains in the RFA:

bi j(r) = β(μ
ex,ref
i [{ρi gi j(r); r}] − μ

ex,ref
i ({ρi }))

+
∑

k

ρkc(2),ref
ik ⊗ hkj (r) (A.1)

with

βμ
ex,HS
i [{ρi(r)}; r] = −c(1),HS

i (r)

=
∫

dr′ ∑

α

∂�

∂nα

[{nα(r ′)}; r ]ω(α)

i (r′ − r)

and

−c(2),HS
i j (r) =

∑

γ,θ

[
∂2�

∂nθ ∂nγ

]

{n0
τ }

∫
dr′ ω(θ)

i (r′)ω(γ )

j (r′ − r)

−c̃(2),HS
i j (k) =

∑

γ,θ

[
∂2�

∂n
θ
∂nγ

]

{n0
τ }
ω̃

(θ )
i (k)ω̃

(γ )

j (−k).

(A.2)

For non-additive hard-spheres one has instead

δFex,NAHS

δρi(r)
=

∑

γ

∫
dx w(i)

γ (|x − r|)

×
[∫

dx′
3∑

α,β

K (12)
αβ (|x − x′|)∂�αβ

∂n(i)
γ

(x, x′)
]

(A.3)

δ2 Fex,NAHS

δρi(r)δρ j(r′)
=

3∑

γ,θ

3∑

α,β

∫
dx w(i)

γ (|x − r|)

×
[∫

dx′K (12)
αβ (|x − x′|) ∂2�αβ

∂n(i)
γ ∂n( j)

θ

(x, x′)

× w
( j)
θ (|x′ − r′|)

]
. (A.4)

Note that the densities n(i)
γ

must be evaluated at the same
position x, for i = j . All these convolutions are treated by
Fourier transforms giving

−c̃(2),NAHS
i j (k) =

∑

γ,θ

∑

α,β

∂2�αβ

∂n(i)
γ ∂n( j)

θ

∣∣∣∣{n( j )0
τ }

× K̃ (12)
αβ ((1 − δi j)k)ω̃

(γ )

i (k)ω̃
(θ)
j (−k). (A.5)
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